A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells

نویسندگان

  • Axel Pagenstecher
  • Sonja Stahl
  • Ulrich Sure
  • Ute Felbor
چکیده

Cavernous vascular malformations occur with a frequency of 1:200 and can cause recurrent headaches, seizures and hemorrhagic stroke if located in the brain. Familial cerebral cavernous malformations (CCMs) have been associated with germline mutations in CCM1/KRIT1, CCM2 or CCM3/PDCD10. For each of the three CCM genes, we here show complete localized loss of either CCM1, CCM2 or CCM3 protein expression depending on the inherited mutation. Cavernous but not adjacent normal or reactive endothelial cells of known germline mutation carriers displayed immunohistochemical negativity only for the corresponding CCM protein but not for the two others. In addition to proving loss of function at the protein level, our data are the first to demonstrate endothelial cell mosaicism within cavernous tissues and provide clear pathogenetic evidence that the endothelial cell is the cell of disease origin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease.

Cerebral cavernous malformations (CCMs) are vascular lesions of the central nervous system appearing as multicavernous, blood-filled capillaries, leading to headache, seizure and hemorrhagic stroke. CCM occurs either sporadically or as an autosomal dominant disorder caused by germline mutation of one of the three genes: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. Surgically resected human CCM les...

متن کامل

CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations.

Cerebral cavernous malformation is a common human vascular disease that arises due to loss-of-function mutations in genes encoding three intracellular adaptor proteins, cerebral cavernous malformations 1 protein (CCM1), CCM2, and CCM3. CCM1, CCM2, and CCM3 interact biochemically in a pathway required in endothelial cells during cardiovascular development in mice and zebrafish. The downstream ef...

متن کامل

ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish.

Cerebral cavernous malformations (CCMs) are a prevalent class of vascular anomalies characterized by thin-walled clusters of malformed blood vessels in the brain. Heritable forms are caused by mutations in CCM1, CCM2 and CCM3, but despite the importance of these factors in vascular biology, an understanding of their molecular and cellular functions remains elusive. Here we describe the characte...

متن کامل

Deletions in CCM2 are a common cause of cerebral cavernous malformations.

Cerebral cavernous malformations (CCMs) are vascular abnormalities of the brain that can result in a variety of neurological disabilities, including hemorrhagic stroke and seizures. Mutations in the gene KRIT1 are responsible for CCM1, mutations in the gene MGC4607 are responsible for CCM2, and mutations in the gene PDCD10 are responsible for CCM3. DNA sequence analysis of the known CCM genes i...

متن کامل

Controversial molecular classification of human cerebrovascular malformations.

Controversial Molecular Classification of Human Cerebrovascular Malformations To the Editor: The identification of underlying causal genes in familial forms of cerebrovascular malformations allows the dissection of an increasing number of these disorders at the molecular level. In recent years, mutations in CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 have been found to cause autosomal dominantly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human Molecular Genetics

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2009